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1. Introduction 
As we move towards higher performance processors and techniques such as out-of-order 

scheduling and superscalar execution, the cost of squashing due to poor branch prediction rises 
exponentially. This motivates the extreme importance of choosing the best possible branch 
predictors in order to minimize the cost incurred by poor speculative execution. This project 
involves implementing different branch predictor schemes, using Pin to evaluate the accuracy of 
different models, and then evaluating the costs and benefits of each scheme. The goal of the 
project is to provide a conclusion of which branch predictor scheme to choose based on 
particular constraints. Current literature evaluates branch predictors solely using accuracy as a 
metric. We evaluate our designs across metrics like accuracy, area, energy, and cycle time, 
therefore better understanding the tradeoffs if any between accuracy and area, energy and cycle 
time. 

In the current literature we found three papers which gave us significant background on 
different branch predictor schemes and strategies. The papers also included designs of reasonable 
scope for this project. These papers were James E. Smith’s “A Study of Branch Predictor 
Strategies”, Tse-Yu Yeh, & Yale N. Patt’s “Two-Level Adaptive Training Branch Prediction” 
and Scott McFarling’s “Combining Branch Predictors”. Smith’s paper introduces the need of 
branch prediction and discusses various branch prediction strategies focusing primarily on 
maximizing prediction accuracy. Tse-Yu Yeh, & Yale N. Patt’s “Two-Level Adaptive Training 
Branch Prediction” builds upon Smith’s paper by examining several previously implemented 
branch prediction schemes, both static and dynamic, as well as proposing their own scheme - the 
Two Level Adaptive Training Scheme. Finally, Scott McFarling’s “Combining Branch 
Predictors” builds upon the first two papers by describing multiple dynamic prediction schemes 
with an eventual goal of combining multiple predictors in order to gain the maximum possible 
accuracy. 

The baseline design for this project is the functional level model of a static scheme 
described in “A Study of Branch Predictor Strategies”, in which branches are predicted as always 
taken. The static, always taken scheme is a good baseline design due to its simplicity, and basis 
of comparison for other designs. We implement prediction of always taken over always not taken 
because a majority of branches are usually taken, and thus we should expect higher accuracy 
than if we implemented always not taken​[1]​.  In addition, this design has high program sensitivity 
and thus it is a good point of comparison against our alternative design because we get a good 
sense for the improvement in program sensitivity in our alternative design. 
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       ​    For the alternative portion of the project, we implement the functional level models for a 
2-bit saturating counter, a parameterized 1-level BHT which keeps track of local history, and a 
parametrized 2-level BHT which keeps track of local and global history in Pin. We also then 
implement an RTL model for parameterized 1-level and 2-level BHTs. These predictors are 
dynamic prediction schemes​ adopted from Tse-Yu Yeh and Yale N Patt’s Two-Level Adaptive 
Training branch predictor. This predictor uses two levels of branch history information in order 
to make the prediction. The first level is the history of the last ‘n’ branches, and the second level 
captures the branch behavior for the last ‘s’ occurrences of the unique pattern of the last ‘n’ 
branches. A branch that is taken is given a “1”, and a branch that is not taken is given a “0”. The 
current history in the first level is used to index into the second level. A FSM in the second level 
is used to yield a prediction for that unique pattern of branches. This scheme allows for high 
accuracy over many different programs and data sets [“Two-Level Adaptive Training Branch 
Prediction”]. Results from the functional level model of the 2-level predictor are used to tune the 
RTL model. Further, the other alternative designs implemented solely in Pin serve to give a 
comparison point of accuracy versus the two-level predictor. The RTL design that gets pushed 
through the ASIC flow allows us to understand the design space in depth for the two-level 
predictor. In addition, as a reach goal we look at the process implemented by “Combining 
Branch Predictors” in which the best parts of several designs are combined.  

To evaluate our design, we utilized a few different frameworks and processes. We first 
used C++ to create functional level models and run simulations for the always taken, 2-bit 
saturating counter, 1-level BHT, and 2-level parameterized BHT predictors. We utilized Pin to 
run real workloads on these predictors and collect accuracy data. Pin allows us to do dynamic 
binary instrumentation on real x86 programs. Therefore, we can use real workloads like gzip to 
calculate the accuracy of particular prediction schemes. The existing literature provides extensive 
comparison using accuracy as their main metric. Therefore, after we collected accuracy 
information using Pin, we implemented synthesizable RTL models for promising designs, and 
quantitatively evaluated the alternative designs on metrics such as area, energy, and cycle time. 
This gave us a broader idea of the design space that branch predictors occupy, and better allowed 
us to understand the tradeoffs of accuracy against area, energy, and cycle time. 

The progression of the literature that we referenced follows the progression of our design 
approach. They start off with simpler designs and build off of each other over time with the goal 
of creating more accurate branch predictors. This makes sense if we look at the date that these 
papers were published. A Study of Branch Predictor Strategies was published in 1981, 
Two-Level Adaptive Training Branch Prediction in 1991, and Combining Branch Predictors in 
1993. The evolution of branch prediction is incremental over time. This is a logical design 
approach, and we did our best to emulate this within our own project.  

A common theme throughout the literature is the need for branch prediction. Smith 
writes, “in high-performance computer systems, performance losses due to conditional branch 
instructions can be minimized by predicting a branch outcome.” Published nearly 40 years ago, it 
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is clear that as the performance of computer systems continues to increase, the need for highly 
accurate branch prediction schemes is more necessary than ever.  

Where the papers differ is their proposed schemes to improve accuracy, as well as their 
methods for testing/evaluating the implemented predictors. Smith’s 1981 paper spends a good 
deal of time on static predictor schemes. These are schemes in which past history is not used for 
making a prediction. Several different static schemes are highlighted such as predictions based 
on opcode, and predictions based on whether the branch is a forward or backward branch. 
However, we focused on the scheme in which all branches are predicted taken, because that is 
our proposed baseline design. The scheme is run on six FORTRAN programs. Based on this 
scheme the best performance yielded 99.4% accuracy, and the worst performance yielded a 
57.4% accuracy [“A Study of Branch Prediction Strategies”]. The takeaway here is the program 
sensitivity to branch prediction accuracy - a point we explored within our own baseline design 
and used as a basis of comparison. The 1981 paper also introduced some dynamic prediction 
schemes such as only predicting not taken if a branch is found in a history table containing 
previous branches that were not taken, or making a prediction based on a history bit. The 
Two-Level Adaptive Training Branch paper builds off the dynamic schemes described in “A 
Study of Branch Predictor Strategies” by describing a two-level adaptive predictor scheme which 
we use for our alternative design. Nine benchmarks from the SPEC benchmark suite are used in 
the study, and instruction traces are fed to the branch prediction simulator to collect statistics. 
The proposed scheme was able to get an average accuracy of 97% on the benchmarks 
[“Two-Level Adaptive Training Branch Prediction”]. Finally, “Combining Branch Predictors” 
builds off the first two papers by describing more dynamic prediction schemes, and how to 
combine the best parts of these designs into one combined design. The combined design can 
yield an accuracy of 98.1% (“Combining Branch Predictors”). A similarity in this paper and 
“Two-Level Adaptive Training Branch Prediction” is that they both use the SPEC 89 benchmark 
suite on their schemes. 
 

We evaluated our designs on the following metrics: accuracy, area, energy, cycle time 
and performance. We realised that the accuracy of the implementations begins to saturate at 256 
bytes. A key theme of the entire comparison was the tension between regfile and SRAM 
implementations of the 1-level architecture. The regfile implementations were smaller for lower 
storage, but for ideal sizes with good accuracy, the SRAM implementations were far more area 
and energy efficient. The regfile implementations were also able to perform predictions and 
updates in one cycle, whereas the SRAM implementations needed 3 cycles. This caused the 
regfile implementations to have much better performance. In terms of cycle time, we realised 
that a large 16kB 2-level predictor cannot be implemented using a single SRAM, but needs to 
employ a banked architecture in order to keep cycle time reasonable.  
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2. Methodology and Instrumentation 
The first approach that we considered when trying to compare branch predictor variations 

was to create RTL models of different branch predictors and use these models to predict the 
outcomes of branches of a compiled microbenchmark. However, we immediately realised that 
this approach did not lend itself to quick and iterative development, and involved excessive 
overheads in implementation in the shape of creating branch traces before the RTL models can 
be developed. A much quicker alternative ​involves instrumenting a real program running 
natively on an x86 server. Using this method, we could instrument a real x86 program to keep 
track of the prediction accuracy of an example branch predictor by updating a model of that 
predictor on every branch. This is the approach that we chose as it allowed us to gain quantitative 
high-level insight into the performance of each branch predictor variation and identify promising 
design points, while at the same time creating synthetic microbenchmark traces. Intel has 
developed a powerful instrumentation tool called Pin which allows us to do all of this.  
 

Pin is a dynamic binary instrumentation framework for the IA-32, x86-64 and MIC 
instruction-set architectures that enables the creation of dynamic program analysis tools. Pin 
provides a rich API that allows us to access context information such as register contents, types 
of instructions, contents of the instruction pointer, and the outcome of a particular branch 
instruction. Pin allows us to do this by writing our own ‘Pintools’ which are C++ programs that 
describe the behavior of the instrumentation we wish to conduct. In our case, our Pintool was 
used to instrument binaries of microbenchmarks and benchmarks, and perform 3 basic steps. 
First, the Pintool would look at each instruction in the compiled binary, and identify branches. 
Second, for each branch instruction, the Pintool would ​use a functional level model of a branch 
predictor to predict the outcome of the branch, and then update the state of the branch predictor 
depending on whether the branch was actually taken. ​Finally, as the P​intool has access to the 
prediction made by the predictor as well as the actual outcome, a helper function also allows it to 
constantly update the accuracy of the predictor.  
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Figure 1: Visual representation of instrumentation methodology 
‘Context information’ includes current instruction pointer, branch outcomes, type of 

current instruction, etc.  
 
 

Refer to Figure 1 for a visual representation of this methodology, and Figure 2 for some 
intuition about how the Pintool functions. 
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Figure 2: Branch instrumentation Pintool 
 

 
 

3. Baseline 
For the baseline implementation, we used a branch predictor that would always predict 

that branches were taken.  
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3.1 Description 

This strategy of branch prediction always predicts that a branch will be taken. We chose 
this strategy because of its ease of implementation, and because of the large room for 
improvement. 

This strategy always makes the same prediction every time a branch instruction is 
encountered. Because of this, the strategy is termed as a ​static​ strategy​[1]​. It has been documented 
that most unconditional branches are always taken, and loops are terminated with conditional 
branches which are taken to the top of the loop​[1]​. This is why we chose to go with a predictor 
that always predicted taken as opposed to not taken. There is no need to keep track of state as 
this is a static predictor and does not change its prediction based on the previous outcomes of the 
branch.  

3.2 Implementation 

The implementation of this strategy is relatively straightforward. In our Pintool, we set a 
bool variable called ‘prediction’ to true. The Pintool would then move through each instruction 
of a compiled binary, and compare its actual outcome to ‘prediction’. The Pintool also has an 
“Accuracy Helper” function which is constantly comparing the prediction made by our predictor 
to the actual outcome of the branch, and updating the accuracy of the predictor.  

 

 
4. Testing 

Testing this branch predictor is non-intuitive. One methodology is to constantly compare 
the predictor’s prediction to the actual outcome. The problem with this is that no predictor is 
100% correct. Even for a predictor with 99% accuracy, there is one misprediction for every 100 
branches. This makes it unclear whether the predictor actually makes a misprediction, or if the 
functionality of the design is wrong. Therefore, we have to look to other methods in order to be 
confident in the functionality of our designs. Although we cannot perform black box testing on 
branch predictors, we can ensure that the predictor is ​behaving ​as expected. This includes 
comparing the prediction made by the predictor to the value we expected it to return, as well as 
whether state updates were made in the right entry of the PHT depending on the contents of the 
BHSR and the current instruction pointer, and whether the FSM was updated to the right value. 
 

We wrote directed tests to test the behavior of our FL models. These tests included unit 
tests for the constructors of the predictors, where we checked whether all entries in the predictor 
were initialised to the correct value, tests for the non-default constructor of the predictors, where 
we can check whether the number of BHSRs in the BHSRT, the length of each BHSR, as well as 
the number of PHTs match up with the expected values, a test case for the predict function of the 
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predictors for a given instruction pointer, where we can check whether the output was the same 
as the expected value, and finally, a test for the update function for a given instruction pointer 
and outcome, where we can check whether the right entry in the right PHT was updated to the 
right state. We also wrote an integration test that ran the predictors through a set of predictions 
and updates, checking whether the entire system worked when integrated together. The FL 
model implementations also included a few design-for-test functions that were used in order to 
fetch dimensions and state of particular entries of the predictor. These design-for-test functions 
allowed for a much more efficient testing process.  
 

To test our RTL models, we utilized two testing strategies. The first strategy used 
directed testing to make sure the RTL was functioning correctly, and the second strategy 
compared the accuracies resulting from the Pin tool and from a simulator that we created. 

The first part of our RTL testing strategy used directed testing. Separate directed tests 
were used to test the one-level, and two-level designs. To test the one-level design, we stressed 
indexing into the same entry in the BHT, as well as indexing into multiple entries in the BHT. 
When indexing into multiple entries of the BHT, the directed tests looked at accessing the same 
entry multiple times, followed by another entry multiple times, as well as when entry accesses 
were interleaved. Each directed test worked its way around the FSM, making sure to make the 
anticipated predictions for every FSM state. To test the two-level design, we first wrote a simple 
test case to test if multiple branch patterns could be written and read correctly from a single PHT. 
We then tested to ensure the BHSRT was functioning properly and updating with the right 
outcomes of previous branches. This involved hopping from one IP to another to see if the 
BHSRT was updated properly. Finally, we used multiple branches to hop from one PHT to 
another PHT to make sure there was no conflict between the PHTs. We also made sure that the 
SRAM got updated correctly, and that one PHT wasn’t overwriting the contents of another.  

The second part of our RTL testing strategy looked at comparing the accuracies produced 
from the pin tool to those from the RTL implementations. We first used Pin to create traces of 
microbenchmarks, and then used those traces as inputs to our RTL models. To verify 
correctness, the accuracies between the FL models in Pin and the RTL models should match up 
exactly. Table 1 shows a comparison between the FL and 1-level register file RTL 
implementation accuracies on five microbenchmarks using 9 and 11 index bits. The simulator 
that produced the accuracy measurements works by parsing through a text file of branch traces, 
instantiating one of the RTL models, and feeding the inputs from the trace into the model. The 
simulator is then able to compare an array of predictions made from our model with the 
outcomes from the branches given in the traces, and thus determine accuracy. An example of the 
output from running the simulator is given in Figure 3, and an example trace is shown in Figure 
4. This trace gives the instruction pointer as well as the outcome for each branch. The reason 
why the accuracies don’t noticeably change between the n=9 and n=11 index bits is because the 
trace’s IPs that were used don’t change between the 9th and 11th bits. It is also important to note 
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that the slight accuracy differences seen between the FL and RTL models is due to differences in 
floating within Python and C++. 

 
FL Model accuracy for ubmarks 

n accum bsearch cmult sort vvadd 

9 87.096771 85.486206 86.206894 76.314453 86.206894 

11 87.096771 85.486206 86.206894 76.365494 86.206894 

RTL Model accuracy from simulator for ubmarks (Regfile) 

n accum bsearch cmult sort vvadd 

9 87.096774 85.486211 86.206896 76.314446 86.2068965 

11 87.096774 85.486211 86.206896 76.365492 86.2068965 

 
Table 1: Accuracy Results for the FL and Simulator 

 
 

  
Figure 3: First 10 branches in vvadd ubenchmark trace 

 

 
Figure 4: Example output from the simulator for 1-level regfile using bsearch ubenchmark 

 

5. Alternative Design 
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Our alternative designs include multiple functional level and register-transfer level 
models of a variety of dynamic branch prediction schemes. ​Dynamic​ schemes take into account 
runtime branch execution history to make predictions​[2]​. This differs from the ​static ​scheme 
described in the baseline section in which prediction is determined from some information that 
was set before runtime (in our case predicting always taken). The dynamic strategies that we 
implemented as part of our alternative design include a 2-bit saturating counter, a parameterised 
1-level BHT based scheme, and a parameterised 2-level BHT based scheme. In this section, we 
will take a close look at the details of each scheme, how we implemented the FL models and 
RTL models, some pros and cons of each scheme, and why we chose these designs. 
 

5.1. Two-bit Saturating Counter 

The basic building block of any dynamic predictor is the 2-bit saturating counter.  This is 
a FSM that describes the state transitions of the predictor that are used to make predictions. The 
FSM takes as input the outcome of a branch, and updates its state to reflect what the next 
prediction should be.  Refer to Figure 5 below for the FSM diagram of the 2-bit saturating 
counter that we used as a building block for all our implementations. When the state is Weakly 
Taken (WT), or Strongly Taken (ST) the predictor predicts ​taken​, and when the state is Weakly 
Not Taken (WNT), or Strongly Not Taken (SNT) the predictor predicts ​not taken.​There are 
multiple ways that the 2-bit FSM can be modified. For example, the FSM could jump to strongly 
taken states directly as seen in Figure 6. Another modification may be to change the initial state 
of the FSM. In our preliminary testing, we observed that the FSM shown in Figure 5 provided us 
with slightly better accuracy than the other transition logic options, and we also observed that the 
initial state of the FSM had negligible impact on accuracy, which is why we used the FSM as 
described in Figure 5.  
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Figure 5: ​2-bit saturating counter  

 

 
Figure 6:​ 2-bit saturating counter which jumps directly from weak state to strong state  
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We also considered using a 1-bit or a 3-bit saturating counter for our designs, but our 
preliminary testing showed that the 1-bit design simply did not have enough resolution to capture 
branch patterns, and the 3-bit saturating counter offered marginal returns. The 2-bit saturating 
counter offered a good balance in terms of the amount of bits needed, the resolution of the FSM, 
as well as the ease of implementation. Let’s take a closer look at how this was implemented in 
our FL and RTL models.  

All our FL models were built in C++, and all our RTL models were written in Verilog. 
For the 2-bit counter, the implementation is straightforward. We used case statements to build a 
simple FSM for our FL and RTL implementations. 

As mentioned previously, the 2-bit saturating counter is incredibly cheap and easy to 
build. However, this scheme does not offer nearly the amount of accuracy that we are aiming for. 
The primary reason for this is that each branch in the sequence of instructions is referring to the 
same FSM, which is causing egregious amounts of undesirable aliasing. In order to remedy this, 
our next step was to build a predictor that would reduce this aliasing. The way this is done is by 
implementing a 1-level BHT based scheme, which is why we chose it as our next design. 

5.2. 1-Level BHT 

The 1-level BHT (branch history table) scheme is nothing but a table of multiple 2-bit 
saturating counters​. ​This way, every branch does not have to share a single FSM. Now, we can 
use a certain number of bits from the instruction pointer of the branch instruction to index into 
this table. The more the number of bits used as the indexing bits, the bigger the BHT will have to 
be, and the lower the aliasing will be. Refer to Figure 7 for a visual representation of how this 
scheme works 

Figure 7:​ One-Level BHT Scheme 
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Obviously, 2 branches may still alias into the same FSM if they have the same index bits. 
This problem can be solved by using a bigger BHT. As you may have noticed, the main variable 
that can be modified in this design is the number of bits used to index into the table (and hence, 
the size of the BHT as well). In order to study this space, our FL and RTL models of the 1-level 
BHT are parameterised by the number of bits they use as the index bits. This allowed us to 
quickly generate 1-level BHT schemes of different sizes and use them to study the effects that 
larger sizes have on accuracy.  

A key feature of this predictor is that it exploits temporal locality. That is, it is capable of 
detecting the patterns of a particular branch’s outcome history, such that the next prediction is 
dependent on the outcome of the branch. Let’s look at how we implemented this predictor’s FL 
and RTL models. 

The FL model of the 1-level BHT scheme is a C++ class. The class includes a 
non-default constructor that can be passed the number of bits you wish to use as the index, and 
an appropriately sized BHT will be created for you. Other member functions of this class include 
‘predict’ and ‘update’. The predict function takes the instruction pointer of a branch as an 
argument, extracts the index from the pointer using some helper functions, and uses this index to 
look into the BHT (a vector of 2-bit counters). Finally, the current state of the particular entry of 
the BHT is used to determine what the prediction is. The ‘update’ function uses the instruction 
pointer of the branch and the outcome of the branch (both obtained from Pin as described in 
section 2) and updates the state of the suitable entry of the BHT. Generating the index from the 
instruction pointer proved to be a particularly challenging step when trying to implement the FL 
model. As the instruction pointer generated during instrumentation was a void pointer type, the 
pointer first had to be cast as a double before we could mask it in order to generate the final 
index. Casting from a pointer to a non-pointer type is not allowed directly in C++, so we had to 
move to employing the <reinterpret_cast> ability of C++ in order to work around this issue. The 
FL models we developed allowed us to quickly get accuracy numbers for different sizes of the 
1-level BHT. This helped us in identifying promising design points which we then used when 
making models that weren’t easily parameterised (for example, SRAM sizes). 

The RTL model of the 1-level BHT was implemented using a register file, as well as by 
using SRAMs. We will first examine the 1-level BHT implementation using a register file. 
Similar to the FL model, the RTL model also supports the ‘predict’ and ‘update’ functionality. 
Its interface takes as input an instruction pointer, and the branch outcome, and outputs the branch 
prediction. A key feature of the register file design is that it is able to perform a predict and 
update in a single cycle. We first implemented this design in a way that took multiple cycles, but 
eventually managed to condense the update and predict functionality into a single stage as 
described above. This was important, as taking less cycles is the advantage of a register file 
implementation over an SRAM implementation. 

The RTL model of the 1-level BHT with SRAMs is similar to the RTL version of the 
register file implementation, except now, the BHT is implemented as an SRAM. It also performs 
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predictions and updates similarly. However, as reads and writes from and to the SRAM aren’t 
combinational, they require extra cycles. This means that a particular transaction (predict + 
update) is only completed after three cycles. This functionality was implemented by the use of an 
FSM which can be seen in Figure 8, and also required the use of an en/rdy handshake protocol, 
as the predictor would not be ready for new inputs every cycle (unlike the register file 
implementation). The SRAM version of the 1-level BHT sends a read request to the BHT in the 
WAIT state. The response is received in the PREDICT state, the prediction is made, and marked 
as valid. The next state is also calculated in this stage. Finally, a write request is sent to the 
SRAM in the UPDATE state. All in all, the SRAM implementation takes 3 cycles to complete 
one transaction.  

A key challenge when incorporating SRAMs was the problem of partial writes. As we 
only need to update 2 bits of a particular row of the SRAM, we had to register the line that was 
read out from the SRAM, calculate the 2 bits that needed to be updated, and then write the entire 
line back into the SRAM. Had we been able to perform partial writes by default, the predict and 
update transactions would have taken 2 cycles instead of 3. The reason behind using an SRAM is 
simply that as the number of entries in the BHT are increased for better accuracy and lower 
aliasing, the size of BHT increases exponentially and SRAMs become more suitable as they 
provide a more compact and dense design. 

As mentioned previously, the 1-level BHT is a significant step up from a single 2-bit 
saturating counter. The main advantages of this scheme is that branches don’t alias as much, and 
temporal locality is exploited when making predictions. However, this scheme is unable to 
exploit spatial locality. That is, the prediction made for a branch is only affected by its history, 
and not the history of its neighboring branches. In order to incorporate this global history into 
our prediction logic, we moved to implement 2-level BHT schemes.  

 
Figure 8:​ FSM used in the SRAM RTL implementation of the 1-level and 2-level Predictor  
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5.3. 2-level BHT  

The 2-level BHT scheme is best described as a set of two tables. The first table is the 
branch history shift register table (BHSRT) and the other table is a set of BHTs. The BHSRT is a 
table with multiple entries (BHSRs) that keep a track of global history of outcomes, and the 
collection of BHTs are just a collection of a table of 2-bit saturating counters. We use some bits 
of the IP to index into the BHSRT (referred to as ‘m’), from where we use the value of the 
BHSRT entry to index into our collection of BHTs. Hence, the length of a BHSRT entry 
(referred to as ‘n’)  determines how large each BHT in the collection will be. Finally, we use 
some bits from the IP (referred to as k) to select one of the BHTs from the collection, and use 
that BHT’s output to determine our final prediction. By using this 2-level process, we can now 
have different predictions for a branch based on the outcome history of neighboring branches. 
Hence, we are exploiting spatial locality. Now, each entry in the BHT collection maps out to a 
different ​pattern​ of a branch’s history, which is why the collection of BHTs is actually a 
collection of ​pattern​ history tables (PHTs).  Refer to Figure 9 for a visual representation of this 
scheme.  

 
 

Figure 9:​ Two-level BHT 
 



Group 3 - ECE 5745 Project Report 

There are now 3 variables that can be tweaked in order to get different versions of this 
2-level predictor (m, n, and k). Our FL model is parameterised by these three values, which 
allows us to quickly create multiple variations and evaluate their accuracy, and find an optimal 
combination of these values. The FL model of the 2-level BHT scheme is a C++ class. The class 
includes a  non-default constructor that can be passed m, n and k, and an appropriately sized 
predictor (a 2-level predictor with 2​m ​entries in the BHSRT, where each entry is n bits long, and a 
set of 2​k​ PHTs where each PHT has 2​n​ members) will be created. Other member functions of this 
class include ‘predict’ and ‘update’. The predict and update functions serve the same purpose as 
the functions in the 1-level BHT. The BHSRT is implemented as a vector of unsigned integers, 
and the PHT collection is a vector of vectors of states. Having parameterised helper functions 
really helped us in reusing code, and makes our FL models extensible and modular.  

The high level design of the RTL follows that of the FL. We parameterize m, n, and k 
such that we can make different 2-level BHTs. This will act as a ‘branch predictor generator’ of 
sorts. The RTL model of the 2-level predictor follows the same FSM as the 1-level predictor 
with three states: WAIT, PREDICT and UPDATE as seen in Figure 8. While exploring the 
design space, we came up with two implementations of the SRAM for the most promising 
numbers we obtained using the functional level models. We initially started with implementing a 
64x2k SRAM which turned out to be expensive in terms of cycle time which will be explored 
further in the next section. To reduce the cycle time, we implemented a multi-bank SRAM where 
the 64x2k SRAM was split into multiple smaller SRAMs.  

While there are several ways to configure a multi-banked implementation, we settled on 
four 64x512 SRAMs.  Although there may be small area improvements from other 
configurations, this design was chosen based on implementation complexity considerations. The 
64x2k block was broken to four 64x512 banks as seen in Figure 10. This allows the number of 
columns to remain the same which allows us to reuse our logic to select specific data bits. The 
only logic which changes is how we choose the index or the row, and this is fairly easy to 
implement. Each bank has its own ‘val’ signal that behaves like an enable to read/write from that 
particular bank. The contents read from the BHSR decides the bank to be enabled. Further, the 
contents of the BHSR can also be used to form a mapping logic between the index of the overall 
design and the banks index. For example, as it can be seen in Figure 10, when the index of the 
overall design lies between ​512-1023, ​bank 2 is enabled and is mapped with index ​0-511​ of that 
bank.   
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Figure 10: Multi-Banked PHT(SRAM) implementation of a 2-level Predictor with 

m=0, n=11, k=5 
 

6. Evaluation 

Branch predictors offer a very rich space for us to explore - different structures (2-bit 
FSM vs 1-level predictors vs 2-level predictors), and within those structures, different 
microarchitectures. There is an excessive amount of design decisions that must be made when 
implementing a branch predictor: how big must the BHT of a 1-level predictor be in order to 
obtain maximum accuracy? Do the accuracy returns begin to saturate at a certain size? How do 
the number of BHSRs, the number of PHTs, and the length of each affect the accuracy of a 
2-level predictor?  Should one use a register file based implementation or an SRAM based 
implementation to implement the predictor? We aim to find the answers to these questions (and 
many others) in this section. 

Our plan for dealing with this large design space is illustrated in Figure 11.  

We begin with a large design space with lots of possible variations. These variations 
include the number of bits used to index into the BHT of a 1-level predictor (and hence, the size 
of the BHT), or in the case of the 2-level predictor - many possible combinations of m, n and k. 
We will use our Pintool and FL models to sweep through this space and find the accuracies for 
all of these models. We use these results to pick some of the promising design points and begin 
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to implement them in RTL. We will consider multiple possible methods of implementing these 
models - register file based and SRAM based. Next, we push these RTL models through the 
ASIC flow, which gives us quantitative data for area, performance, energy and cycle time for 
each of these models. We use this data and combine it with accuracy results in order to motivate 
our design decisions.  

Let’s begin at step 1: sweeping through the entire design space to find promising design points. 

 

 

 

Figure 11: Plan for evaluation: ​start with rich space, and focus in on promising designs 
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6.1 Accuracy 

We used our Pintool and FL models in combination with a benchmark suite in order to 
determine the accuracy of each predictor model in the large design space. The benchmarks we 
used to simulate real workloads were multiple runs of gzip on two different sized files. 

All in all, our suite offers applications whose branch counts vary from 46,000 to over 11 
million. These large numbers are helpful as a branch predictor tends to have the bulk of its 
mispredictions in the beginning of a program’s execution, and large branch counts help to mask 
this effect and allow us to obtain a more representative set of accuracy numbers.  
 

Let’s begin by looking at the performance of our baseline design. The baseline design 
always predicts taken, and we obtained an average accuracy of ​52.243% ​on our benchmarks. 
Using this as a baseline, let’s take a look at how our alternative designs performed.  
 

First, the 2-bit saturating counter. The accuracy results for the 2-bit saturating counter are 
in Table 2. 
 

2-bit saturating counter - Accuracy results 

Memory (bytes) 

Accuracy 

gzip (project repo) gzip (small text file) Average 

0.25 47.149616 73.188362 60.168989 

 
Table 2: Accuracy for the 2-bit saturating counter 

 
The 2-bit saturating counter has an average accuracy of ​60.16%​ on our benchmarks. This is a 
significant improvement over our baseline design, and at the very attractive cost of only 2 bits. 
It’s interesting to note that the 2-bit saturating counter performed better on the smaller 
benchmark. In order to determine why, we configured our Pintool to count the number of unique 
branches in a particular benchmark. This showed that when there was a low number of unique 
branches, the 2-bit counter performed better. On the other hand, when there are multiple unique 
branches, the 2-bit counter tends to have lower accuracy than more sophisticated schemes 
because each branch aliases into the same FSM, and this hurts accuracy. The 1-level design 
solves this problem. Let’s take a look at the accuracy results for the 1-level design space. 
 

The only variable in a 1-level branch predictor is the number of bits used to index (n) into 
the BHT (and hence, the size of the BHT). We chose to sweep n from 0 to 20 in steps. The 
results from this sweep are shown in Table 3 below: 
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1 -level predictor - accuracy results 

n Memory (bytes) 

Accuracy 

gzip (project repo) gzip (small file) Average 

0 0.25 47.149616 73.188362 60.168989 

2 1 59.870171 85.685814 72.7779925 

5 8 84.090919 92.115959 88.103439 

10 256 96.781197 95.440712 96.1109545 

12 1024 97.123497 95.609756 96.3666265 

15 8192 97.175056 95.613708 96.394382 

20 262144 97.177574 95.614105 96.3958395 

 
Table 3: 1-level predictor accuracy results 

 
This table suggests that as n rises, the accuracy of the 1-level branch predictor rises. This is 
intuitive, as the size of the BHT grows, aliasing reduces, and accuracy increases. But when does 
the return in accuracy begin to saturate? Plot 1 below plots the accuracy against the amount of 
storage needed by a 1-level predictor.  
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Plot 1: Accuracy vs storage for 1-level predictor variations 

 
 
When the storage increases from 0.25 bytes (n = 0) to 256 bytes (n = 10), we see a clear increase 
in the accuracy. Any further increase in storage offers extremely marginal returns. 
Quantitatively, going from n = 12 to n = 15 offers a ​0.02%​ increase in prediction accuracy - this 
corresponds to 1 extra correct prediction every 5000 branches, and it demands ​8x​ the amount of 
storage. Hence, it is fair to say that n = 10 and n = 12 are our most promising design points, and 
we will move forward with implementing their RTL models.  

Moving onto the accuracy analysis for 2-level models, the three variables in this case 
were the number of entries in the BHSRT (dictated by m), the length of each entry in the BHSRT 
(n bits long) and the total number of PHTs (dictated by k). 

We used our Pintool to sweep through 48 possible design points for the 2-level design. 
The table of results is too big to be included in-line, and can be found in the appendix. In order to 
determine which designs were to be pushed through the flow, we plotted all of our configurations 
on a storage v accuracy plot in Plot 2. 
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Plot 2: Accuracy vs. Storage for 2-Level predictor configurations 

There are multiple Pareto optimal points, but we wanted our 2-level design to outperform the 
1-level design, so we picked a 16kB configuration with m = 0, n = 11 and k = 5.  

Another key insight is that for 2 designs with the same number of entries in the collection 
of PHTs (same ‘n’) and the same number of PHTs in the collection (same ‘k’), increasing the 
number of entries in the BHSRT (m) reduces the accuracy. This lines up with intuition too. As 
the BHSRT is meant to capture global history, aliasing is desirable. In order to ensure maximum 
aliasing, we should have the lowest possible number of BHSRT entries. Hence, we settle on m = 
0 for our RTL implementation. Knowing this is useful because it allows us to decide early on 
that we do not need to implement the BHSRT using an SRAM due to its small size.  

Plot 3 plots the 1-level and 2-level accuracies on the same plot. 

 

Plot 3: Storage vs Accuracy for all configurations 

To summarize our initial sweep on the large design space: we chose n = 10 and n = 12 as 
promising design points for our 1-level predictor as anything more than that offered marginal 
returns in accuracy. As for the 2-level predictor, we chose m = 0, n = 11, and k = 6 to be a 
reasonable design to be pushed through the flow.  
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After pushing these designs through the flow, we obtained quantitative results for area, 
energy, cycle time, and performance. Let’s take a closer look at each one in the following 
subsections. 

6.2 Area 

In total, we pushed 9 designs through the flow. Out of these, 6 were 1-level predictor 
implementations, and three were 2-level implementations. The six 1-level predictor 
implementations that were pushed through the flow were: 

 
1. Regfile based BHT, n = 5 
2. Regfile based BHT, n = 9 
3. Regfile based BHT, n = 11 
4. SRAM based BHT, n = 5 
5. SRAM based BHT, n = 9 
6. SRAM based BHT, n = 11 

 
We pushed the 1-level predictor with n = 5 through the flow before we had determined 

that n = 9 and n = 11 were optimal numbers. Nevertheless, the results from the predictor with n = 
5 offer some interesting insights.  

 
The reason that we chose n = 9 and n = 11, as opposed to n = 10 and n = 12 was because 

n = 9 and n = 11 are a better choice when trying to implement SRAMs with reasonable aspect 
ratios. An 11 bit index means 2048 entries, each holding 2 bits, for 4096 bits of memory (64x64 
SRAM). A 9 bit index means 512 entries, each holding 2 bits, for 1024 bit of memory (32x32 
SRAM). 

 
Let’s take a look at the area implications of these 6 designs. Table 4 shows the area 

results for the 1-level implementations.  

 

Implementation n Memory (bytes) Area(um^2) 

REGFILE 

5 8 720.328 

9 128 11629.786 

11 512 46322.57 

SRAM 

5 8 1208.529 

9 128 3228.05 

11 512 7774.838 
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Table 4: Area results for 1-level implementations 

 
When n = 5, the SRAM implementation has a higher area than the regfile implementation. 
Conversely, as we increase n, the area of the regfile implementation rises much more quickly 
than the SRAM implementation’s area. In the cases where n = 9 and 11, it is better to go with an 
SRAM implementation rather than a register file because it reduces the area by ~4 times when n 
= 9 and ~6 times when n = 11. From Plot 4, the greater slope from the regfile implementation 
shows that as n increases it becomes more and more beneficial in terms of area to use an SRAM. 
Only at small values of n, shown from the intersection of the lines of best fit, does the register 
file consume less area.  
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Plot 4: Design Area vs n for SRAM and Register File  

 
Figure 12 and Figure 13 show the amoeba plot of the 1-level BHT. The SRAM is 

depicted by the rectangular grid. It can be clearly seen how even with using the SRAM 
implementation over the regfile, most of the area is occupied by the SRAM compared to the 
surrounding logic. The takeaway here is that memory is the major contributor in terms of area, 
which is why we want to have smaller sized BHTs. 
 

In addition to the discrepancies in area, the regfile vs SRAM implementations also differ 
heavily in performance, in which the regfile is superior. This will be examined further in the 
Performance subsection. To summarize, when n < 6, the regfile implementation is better not only 
for area, but also performance. However, for n > 6, the regfile area scales very quickly, and the 
area overhead saved from using SRAMs is worth the performance loss. Because our pintool 
sweep showed accuracy saturation starting at n=10, there would never be a need to implement a 
1-level branch predictor with n < 6, and thus we settle on the SRAM implementation for the 
1-level design.  
 

 
Figure 12: Amoeba plot of 1 level BHT with n = 9 with 32x32 SRAM  

 




